Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants
نویسندگان
چکیده
We propose an algorithm for encoding deterministic finite-state automata (DFAs) in second-order recurrent neural networks with sigmoidal discriminant function and we prove that the languages accepted by the constructed network and the DFA are identical. The desired finite-state network dynamics is achieved by programming a small subset of all weights. A worst case analysis reveals a relationship between the weight strength and the maximum allowed network size, which guarantees finite-state behavior of the constructed network. We illustrate the method by encoding random DFAs with 10, 100, and 1000 states. While the theory predicts that the weight strength scales with the DFA size, we find empirically the weight strength to be almost constant for all the random DFAs. These results can be explained by noting that the generated DFAs represent average cases. We empirically demonstrate the existence of extreme DFAs for which the weight strength scales with DFA size.
منابع مشابه
Stable Encoding of Finite-State Machines in Discrete-Time Recurrent Neural Nets with Sigmoid Units
There has been a lot of interest in the use of discrete-time recurrent neural nets (DTRNN) to learn finite-state tasks, with interesting results regarding the induction of simple finite-state machines from input-output strings. Parallel work has studied the computational power of DTRNN in connection with finite-state computation. This article describes a simple strategy to devise stable encodin...
متن کاملConstructing Deterministic Finite-State Automata in Recurrent Neural Networksy
Recurrent neural networks that are trained to behave like deterministic nite-state automata (DFA's) can show deteriorating performance when tested on long strings. This deteriorating performance can be attributed to the instability of the internal representation of the learned DFA states. The use of a sigmoidal discriminant function together with the recurrent structure contribute to this insta...
متن کاملRepresentation of Fuzzy Finite State
Based on previous work on encoding deterministic nite-state automata (DFAs) in discrete-time, second-order recurrent neural networks with sigmoidal discriminant functions, we propose an algorithm that constructs an augmented recurrent neural network that encodes fuzzy nite-state automata (FFAs). Given an arbitrary FFA, we apply an algorithm which transforms the FFA into an equivalent determinis...
متن کاملEquivalence in Knowledge Representation: Automata, Recurrent Neural Networks, and Dynamical Fuzzy Systems
Neurofuzzy systems—the combination of artificial neural networks with fuzzy logic—have become useful in many application domains. However, conventional neurofuzzy models usually need enhanced representational power for applications that require context and state (e.g., speech, time series prediction, control). Some of these applications can be readily modeled as finite state automata. Previousl...
متن کاملEquivalence in Knowledge Representation : Automata , Recurrent Neural Networks , andDynamical Fuzzy
Neuro-fuzzy systems-the combination of artiicial neural networks with fuzzy logic-are becoming increasingly popular. However, neuro-fuzzy systems need to be extended for applications which require context (e.g., speech, handwriting, control). Some of these applications can be modeled in the form of nite-state automata. Previously, it was proved that deterministic nite-state automata (DFAs) can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 8 4 شماره
صفحات -
تاریخ انتشار 1996